

ANNUAL REPORT 2011

UIUC, August 18, 2011

Transient Flow, Vortex Formation, and Slag Entrainment in the Mold with Water Models and URANS Modeling

Seong-Mook Cho, Hyoung-Jun Lee, Seon-Hyo Kim

Department of Materials Science and Engineering Pohang University of Science and Technology

Brian G. Thomas

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

•Seong-Mook Cho

Mech

Research Scope

•Materials Science and Engineering

Background:

POSTECH

Pohang University of Science and Technology

- Transient flow induces asymmetric flow by time, and this phenomena could be severe with nozzle clogging.
- Asymmetric flow could induce abnormal fast surface flow and vortex formation, resulting in slag entrainment.
- It is important to understand transient fluid flow in the mold for investigating the effect of asymmetric surface flow on vortex formation and slag entrainment.

Objective:

- Study effect of transient flow and nozzle clogging on asymmetric surface flow.
- Investigate effect of transient asymmetric surface flow on vortex formation and slag entrainment.
- Examine capability of Filtered URANS model for modeling timedependent surface flow and vortex formation in water model.

Methodology:

- Water model experiment to quantify transient surface flow, vortex formation and slag entrainment.
- Computational modeling to explain flow pattern with Steady RANS and Filtered URANS model.

3 Nozzles to Study Clogging Effects

Dimension of nozzle port		No- clog	Small- clog	Severe- clog
	Width (mm)	23.3	23.3	23.3
Right	Right Height (mm)		26.7	26.7
	Width (mm)	23.3	19.0	13.5
Left	Height (mm)	26.7	21.8	15.4
Ratio of area between left and right		1	0.67	0.33
Ratio of area between two ports and nozzle bore		2.54	2.11	1.69
Port angle (degree)		-35	-35	-35

	Right port		
No-clog	Small-clog	Severe-clog	All cases
23.3mm	19.0mm 21.8mm	13.5mm	23.3mm

Clog	in	left	no	zzle	port
- Smal	l-cl	og (3	33%	clog)

- Severe-clog (67% clog)

Processing Conditions for 1/3 Scale Water Model

Similarity between the 1/3 scale water model and the real caster conditions Froude number (Ratio of Inertia force to gravitational force) = v / \sqrt{gL}

	1/3 scale water model	Real caster
Casting speed	0.917 m/min	1.59 m/min
Water flow rate	34.4 LPM	537 LPM (3.77 Ton/min)
Mold width	500 mm	1500 mm
Mold thickness	75 mm	225 mm
SEN depth	60 mm	180 mm
ρ _{fluid}	998.2 kg/m ³ (water)	7020 kg/m ³ (steel)
μ _{fluid}	0.001003 kg/m-s (water)	0.0067 kg/m-s (steel)
Nozzle(well bottom type) port angle	35 degree downwards	
Nozzle ports	No-clog: Symmetric ports Small-clog: 0.67 asymmetric left port, Severe-clog: 0.33 asymmetric left port	
Nozzle bore diameter (inner/outer)	25 mm / 46 mm	75mm / 138mm
Shell	no	yes
Gas injection	no	yes

Pohang University of Science and Technology

onsortium

Materials Science and Engineering

•Seong-Mook Cho

•5

ntinuous Casting Consortium

Computational Model

- Reynolds-Averaged Navier-Stokes (RANS) model: Standard k ε (SKE) model
 ✓ SKE model well predicts time-averaged flow with reasonable accuracy and efficiency but, has deficiencies to predict turbulence quantities.
- Filtered Unsteady Reynolds-Averaged Navier-Stokes (FURANS) model:
 ✓ Johansen et al. improved on the SKE model by adopting the filtering
 - concept*

Turbulent viscosity $(v_t): C_{\mu} \frac{k^2}{\epsilon} \rightarrow C_{\mu} min(1.0, f) \frac{k^2}{\epsilon} (f = \frac{\Delta \epsilon}{k^{3/2}})$

✓ Chaudhary et al. reported that the Filtered URANS model performs between LES and Steady RANS model with capturing the long-time variations of mold flow pattern of continuous caster**

 \checkmark The cube root of Maximum cell volume in domain is adopted for filter size using UDF

Filter size (Δ) = $\sqrt[3]{Maximum cell volume in the domain}$

- Steady SKE and FURANS model are adopted for predicting time-averaged and -dependent flow in the mold of 1/3 scale water model

Mesh in Computational Domain for SKE Model

- Hexa-cells used in the computational domain

- No-clog: 0.107 million (quarter domain), Small-clog: 0.205 million (half domain), Severeclog: 0.203 million (half domain)

Steady RANS (SKE model):

- Wall boundary with no-slip condition using standard wall functions.

• Filtered Unsteady RANS model:

- Wall boundary with no-slip condition using Enhanced Wall Treatment (EWT).

• For both Steady RANS and Filtered URANS model

- Constant velocity magnitude (0.001195 m/sec) with 10⁻⁵ m² / sec² turbulent kinetic energy and 10^{-5} m² / sec³ turbulent dissipation rate at the inlet
- 0 shear stress conditions for free top surface.
- Constant pressure (0 gauge pascal) with 10⁻⁵ m² / sec² turbulent kinetic energy and 10⁻⁵ m² / sec³ turbulent dissipation rate at the mold bottom outlet

•Materials Science and Engineering

Pohang University of Science and Technology

Numerical Methods

Steady RANS (SKE model):

- Calculating with combined nozzle and mold domain
- Semi-Implicit Pressure Linked Equations (SIMPLE) method for pressure-velocity coupling.
- 1st order upwind scheme to discretize convection terms.
- Convergence in almost all cases until scaled residuals were reduced to stable 10⁻⁴

• Filtered Unsteady RANS model:

- Calculating with combined nozzle and mold domain.
- Fractional Step for pressure-velocity coupling.
- 1st order upwind scheme to discretize convection terms.
- Residuals were reduced by 3 orders magnitude at every timestep
- Data collecting for 12.5 sec after 24 sec for stabilizing flow with 0.005 sec time-step

•Seong-Mook Cho

Jet Characteristics (SKE model)

Jet Characteristics (SKE model)						
	No-clog		Small-clog		Severe-clog	
	Left	Right	Left	Right	Left	Right
Vertical jet angle (degree)	-35.0	-35.0	-31.2	-36.4	-31.1	-38.0
Average jet speed (m/sec)	0.55	0.55	0.66	0.68	0.63	0.81
Flow rate (kg/sec)	0.286	0.286	0.276	0.296	0.145	0.427
Averaged jet force (N)	0.157	0.157	0.182	0.201	0.091	0.346
Maximum velocity magnitude (m/sec)	0.98	0.98	1.10	1.17	0.87	1.28
Weighted average turbulent kinetic energy (m²/s²)	0.022	0.022	0.043	0.020	0.033	0.019
Weighted average turbulent kinetic energy dissipation rate (m²/s³)	0.782	0.783	2.12	0.797	1.47	0.731
Back-flow zone (%)	17.2	17.2	0	16.9	0	17.2

 F_{iet} (Averaged Jet Force) = U_{iet} (Averaged Jet Speed)×Q_{iet} (Flow Rate)

- Increasing asymmetry of the port sizes causes increased asymmetry of jet characteristics - The vertical jet angle becomes larger (directed more steeply downwards) at the non-

clogged port and smaller at the clogged port, relative to the average vertical jet angle with no clogging.

- Total jet force from both ports increases with nozzle clogging.

Pohang University of Science and Technology

•Materials Science and Engineering

K ~ ~		
24.0 sec	27.0 sec	30.0 sec
1.3 1.19167 1.19167 0.966667 0.655 0.655 0.655 0.433333 0.325 0.433333 0.325 0.216667 0.216667 0.108333 0	-Transient mold	flow by time indu

-Transient mold flow by time induces complex roll pattern at upper and lower regions.

33.0 sec

- Asymmetry of upper roll pattern induces transient asymmetric surface flow by time.

Velocity Magnitude

(m/sec)

36.5 sec

•Seong-Mook Cho

Time-Averaged Surface Flow Pattern (SKE model)

Comparison of Mold Flow Pattern between Measured and Predicted one by Filtered URANS Model

Comparison of Velocity Histories between Measured asting and Predicted one (Filtered URANS model)

- Filtered URANS model well predicts velocity fluctuation during time.
- For much better predicting averaged velocity, It need much time than 12.5sec for Filtered URANS model

Transient Surface Flow Pattern and Vortex Formation (Filtered URANS model results)

< Measured Vortex Formation >

- Vortices form at the left side region of SEN with severe-clog - Transient surface flow changes number, location and size of vortices

- In severe-clog case, flow direction angle histories at left regions confirm calculation accuracy of URANS model for predicting time-dependent flow Velocity Magnitude

Pohang University of Science and Technology

Vortex Strength with Transient Surface Flow (Filtered URANS model results)

Some vortices form at the surface and penetrate deep near nozzle port.

Vortex could form at the region below the surface and expand along depth from free surface.

- Vortices are caused by asymmetric flow between right and left region

- Vortex frequency increases with clogging due to greater diff. of right/left velocity
- Asymmetry of vortex formation frequency between inside and outside region is not significant
- Transient turbulence flow makes vortices even though surface flow from both side is

symmetric

Pohang University of Science and Technology

Relation between Transient Surface Flow and Vortex Formation Frequency

< Severe-clog nozzle case >

Predicted vortex formation frequency (With Karman vortex shedding equation)	0.39 Hz
Measured vortex formation frequency (measuring vortex formation if there are over 2 times rotations)	0.22 Hz

- Assumption of Karman equation induce the difference between predicted and measured vortex formation frequency: predicted vortex formation frequency is higher than measured one

✓ Steady flow

asting

✓ No vortex definition (size, vorticity, strength)

✓ Infinite flow surface

Slag Entrainment with Asymmetric Flow

<No-Clog Case> <Severe-Clog Case> - Vortex formation and shear instability induced by asymmetric flow can entrain slag Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho

Slag Entrainment by Shear Instability

< Small entrainment > Pohang University of Science and Technology

- Abnormal fast surface flow induce instability of layer between oil and water, resulting in entrainment of oil into water pool

- Entrained oil reaches nozzle port

- Jet flow takes oil deep into the mold - Oil is decomposed into small size

•Materials Science and Engineering

< Large entrainment > What decide the quantity of entrained oil?

•28

Application of Equations to Predict Critical Velocity for Shear Instability onsortium

upper 🔶 🔶	(1, 1)
	$\Delta V_{critmin} = 4/4g(\rho_1 - \rho_1)I_{11} - + $
lower	$\langle \mathbf{\rho}_{1}, \mathbf{\rho}_{2} \rangle$

< Von Helmholtz, H.L.F.: Uber discontinuierliche FlueBigkeits-Bewegungen; Monatsb. K. Preuss. Akad. Wiss. Berlin, 23 (1868), P. 215-228 > < Thomson, W. (Lord Kelvin): Hydrokinetic Solutions and Observations; Phil. Mag., 42 (1871), No. 281, P. 362-377>

$$\Delta V_{\text{crit,min}} = \sqrt[4]{4g(\rho_1 - \rho_u)\Gamma_{u1} \frac{(\mu_1 + \mu_u)^4}{(\rho_u \mu_1^2 + \rho_1 \mu_u^2)^2}}$$

< T. Funada and D. D. Joseph, Journal of Fluid Mechanics 445 (2001), p. 263-283 >

	Theory	Application
۸۷	Critical minimum valacity difference between two lays	Kelvin-Helmholtz: 0.072 m / sec
Crit,min	Childar minimum velocity difference between two laye	Funada-Joseph: 0.102 m / sec
g	Gravitational acceleration	9.8 m / sec ²
ρι	Density of lower liquid	Water: 998 kg/m ³
ρ _u	Density of upper liquid	Silicon Oil: 965 kg/m ³
Γ _{ul}	Interfacial tension between two liquid	Silicon oil / water: 0.02N/m
μ	Viscosity of lower liquid	Water: 0.001 kg/m·sec
μ	Viscosity of upper liquid	Silicon Oil: 0.0965kg/m·sec
University of So	cience and Technology •Materials Science and Engineeri	ing •Seong-Mook Cho

Comparison of Critical Velocity for Shear Instability and Entrainment between Predicted and Measured One

- Hibbeler's simulation results well-match with measured, so has excellent potential for future work.
- Funada-Joseph equation considering oil viscosity effect predicts lower critical velocity than Kevin-Helmholtz. * Lance Hibbeler, AISTECH 2010

Pohang University of Science and Technology

asting

Pol

Effect of Argon Gas on Entrainment

< Argon gas flow rate: 0 SLPM >

< Argon gas flow rate: 0.6 SLPM >

< Argon gas flow rate: 1.8 SLPM >

 In spite of injected argon gas effect on decreasing effect of interfacial tension between oil and water and oil viscosity, shear instability could be decreased with optimizing argon gas injection conditions by decreasing surface velocity.

Argon gas injecting over optimized conditions (flow rate and bubble size) could induce slag crawling with argon gas foaming in the oil layer.

Pohang University of Science and Technology

•Materials Science and Engineering

•Seong-Mook Cho

•31

Comparison of Properties between Mold Flux/Steel and Silicon Oil/Water System

	Mold flux (*)	Silicon oil
Density (g/ml)	3	0.965
Kinematic Viscosity (mm²/s)	27~300 (at 1300°c)	100 (at 25°c)
Surface tension (mN/m)	250~375	20.9
Interfacial tension (mN/m)	1206~1285 (with steel)	20 (with water)
	* Keiji Watanabe et al., I	<u>SIJ Int., Vo</u> l. 49 (2009), P

	Steel	Water	
Density (g/ml)	7.02	0.998	
Kinematic Viscosity (mm ² /s)	0.855	1.00	

Ratio of density:

 $\frac{\text{Density of liquid mold flux}}{\text{Density of molten steel}} = \frac{3}{7.02} = 0.43 < \frac{\text{Density of silicon oil}}{\text{Density of water}} = \frac{0.965}{0.9982} = 0.967$

 Higher density ratio, lower interfacial tension and lacking viscosity gradient all produce more slag entrainment in silicon oil/water system than in steel/slag system
 It is need to understand entrainment phenomena in oil/water system and develop computational model for mold flux/steel system modeling

Summary - 1

- Asymmetric jet from clogged nozzle cause asymmetric flow and unbalanced double roll pattern in the mold.
- The surface flow at the side with non-clogged port is faster than clogged port.
- More asymmetry of flow between left and right side induces faster and consistent flow at the gap between SEN and mold.
- Transient mold flow by time induces complex roll pattern at mold upper regions, resulting in transient asymmetric flow at the surface.

Vortex formation and Slag Entrainment

- Asymmetric surface flow induced by turbulent flow variations and nozzle clogging makes vortices at 4 general regions near SEN.
- Vortex frequency increases with clogging due to greater diff. of right/left velocity.
- Karman vortex-prediction equation needs calibration to include transient flow, duration, and severity of the vortex.
- Videos show slag entrainment from vortex formation, excessive transient surface velocity, and slag crawling down SEN

•Materials Science and Engineering

Pohang University of Science and Technology

Summary - 2

- Abnormal fast surface flow over critical velocity entrain slag by making severe shear instability.
- There will be critical argon flow rate for entrainment by crawling.
- It is need to understand entrainment phenomenon in oil/water system and develop computational model for mold flux/steel system modeling via modeling oil/water system of water model.

Comparison of SKE and Filtered URANS model with measurement.

- SKE model predicts the symmetric flow pattern with no clogging ok, but overpredicts the asymmetric suppression of surface flow by the faster flow in clogged cases.
- Vortexing flow can be roughly calculated by steady SKE model.
- Filtered URANS model has better capability to predict transient asymmetric flow and vortex formation.

•Seong-Mook Cho

- Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Tata, Magnesita Refractories, Nucor Steel, Nippon Steel, POSTECH, POSCO, SSAB, ANSYS-Fluent)
- Dr. Rajneesh Chaudhary, Lance Hibbeler and Dr. Ho-Jung Shin
- Rui Liu for post processing of video
- Dr. Joo-Choi, Dr. Joong-Gil Park, Dr. Shin-Eon Kang and Sang-Woo Han (POSCO Technical Research Laboratories)
- POSCO (Grant No. 4.0006378.01)
- The National Science Foundation (Grant No. DMI 07-27620)

